You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

In order not to intimidate students by a too abstract approach, this textbook on linear algebra is written to be easy to digest by non-mathematicians. It introduces the concepts of vector spaces and mappings between them without dwelling on statements such as theorems and proofs too much. It is also designed to be self-contained, so no other material is required for an understanding of the topics covered. As the basis for courses on space and atmospheric science, remote sensing, geographic information systems, meteorology, climate and satellite communications at UN-affiliated regional centers, various applications of the formal theory are discussed as well. These include differential equations, statistics, optimization and some engineering-motivated problems in physics. Contents Vectors Matrices Determinants Eigenvalues and eigenvectors Some applications of matrices and determinants Matrix series and additional properties of matrices

Ward Cheney and David Kincaid have developed Linear Algebra: Theory and Applications, Second Edition, a multi-faceted introductory textbook, which was motivated by their desire for a single text that meets the various requirements for differing courses within linear algebra. For theoretically-oriented students, the text guides them as they devise proofs and deal with abstractions by focusing on a comprehensive blend between theory and applications. For application-oriented science and engineering students, it contains numerous exercises that help them focus on understanding and learning not only vector spaces, matrices, and linear transformations, but uses of software tools available for use in applied linear algebra. Using a flexible design, it is an ideal textbook for instructors who wish to make their own choice regarding what material to emphasis, and to accentuate those choices with homework assignments from a large variety of exercises, both in the text and online.

Emphasis is placed on applications in preference to more theoretical aspects throughout this readable introduction to linear algebra for specialists as well as non-specialists. An expanded version of A First Course in Linear Algebra.

Text covers sets and mappings, vector spaces, matrices, linear functionals, other basics; plus linear programming, Tchebychev approximations, more. Ideal introduction for undergraduates; reference for theoretical, applied mathematicians. Problems and exercises.

This popular and successful text was originally written for a one-semester course in linear algebra at the sophomore undergraduate level. Consequently, the book deals almost exclusively with real finite dimensional vector spaces, but in a setting and formulation that permits easy generalisation to abstract vector spaces. A wide selection of examples of vector spaces and linear transformation is presented to serve as a testing ground for the theory. In the second edition, a new chapter on Jordan normal form was added which reappears here in expanded form as the second goal of this new edition, after the principal axis theorem. To achieve these goals in one semester it is necessary to follow a straight path, but this is compensated by a wide selection of examples and exercises. In addition, the author includes an introduction to invariant theory to show that linear algebra alone is incapable of solving these canonical forms problems. A compact, but mathematically clean introduction to linear algebra with particular emphasis on topics in abstract algebra, the theory of differential equations, and group representation theory.

This volume presents a thorough discussion of systems of linear equations and their solutions. Vectors and matrices are introduced as required and an account of determinants is given. Great emphasis has been placed on keeping the presentation as simple as possible, with many illustrative examples. While all mathematical assertions are proved, the student is led to view the mathematical content intuitively, as an aid to understanding. The text treats the coordinate geometry of lines, planes and quadrics, provides a natural application for linear algebra and at the same time furnished a geometrical interpretation to illustrate the algebraic concepts.

"Linear Algebra" is intended for a one-term course at the junior or senior level. It begins with an exposition of the basic theory of vector spaces and proceeds to explain the fundamental structure theorem for linear maps, including eigenvectors and eigenvalues, quadratic and hermitian forms, diagnolization of symmetric, hermitian, and unitary linear maps and matrices, triangulation, and Jordan canonical form. The book also includes a useful chapter on convex sets and the finite-dimensional Krein-Milman theorem. The presentation is aimed at the student who has already had some exposure to the elementary theory of matrices, determinants and linear maps. However the book is logically self-contained. In this new edition, many parts of the book have been rewritten and reorganized, and new exercises have been added.

Basic textbook covers theory of matrices and its applications to systems of linear equations and related topics such as determinants, eigenvalues, and differential equations. Includes numerous exercises.