You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps. The text examines the maps’ positivity properties, as well as...

This book studies algebras and linear transformations acting on finite-dimensional vector spaces over arbitrary fields. It is written for readers who have prior knowledge of algebra and linear algebra. The goal is to present a balance of theory and example in order for readers to gain a firm understanding of the basic theory of finite-dimensional algebras and to provide a foundation for subsequent advanced study in a number of areas of mathematics.

Special Set Linear Algebras introduced by the authors in this book is an extension of Set Linear Algebras, which are the most generalized form of linear algebras. These structures can be applied to multi-expert models. The dominance of computers in everyday life calls for a paradigm shift in the concepts of linear algebras. The authors belief that special set linear algebra will cater to that need.

Elementary Linear Algebra, First Canadian Edition, features a computational emphasis and contains just the right mix of theory and worked examples. The authors provide students with easy-to-read explanations, examples, proofs and procedures and also stress that linear algebra has many interesting and important applications, both in the sciences and the arts. The book mixes the theory and practice of linear algebra seamlessly, with a variety of interesting and topical applications such as music and fractals throughout, including one section that deals with using Fourier transforms to uncover the secrets behind the opening chords of a song!

This is a book of exercises in Linear Algebra. Through a systematic detailed discussion of 200 solved exercises, important concepts and topics are reviewed. The student is led to make a systematic review of topics from the basics to more advanced material, with emphasis on points that often cause the greatest difficulties. The solved exercises are followed by an additional 200 proposed exercises (with answers), thus guiding the student to a systematic consolidation of all topics. The contents follow closely the majority of the introductory courses of Linear Algebra. We consider in particular systems of linear equations, matrices, determinants, vector spaces, linear transformations, inner products, norms, eigenvalues and eigenvectors. The variety of exercises allows the adjustment to different levels in each topic.

This is the first book on linear algebra written specifically for social scientists. It deals only with those aspects of the subject applicable in the social sciences and provides a thorough understanding of linear algebra for those who wish to use it as a tool in the design, execution, and interpretation of research. Linear mathematical models play an important role in all of the social sciences. This book provides a step-by-step introduction to those parts of linear algebra which are useful in such model building. It illustrates some of the applications of linear analysis and helps the reader learn how to convert his formulation of a social science problem into algebraic terms. The author ...

This book presents a unified treatment of recently developed techniques and current understanding about solving systems of linear equations and large scale eigenvalue problems on high-performance computers. It provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications. Topics include major elements of advanced-architecture computers and their performance, recent algorithmic development, and software for direct solution of dense matrix problems, direct solution of sparse systems of equations, iterative solution of sparse systems of equations, and solution of large sparse eigenvalue problems.

Differential Equations with Linear Algebra explores the interplay between linear algebra and differential equations by examining fundamental problems in elementary differential equations. With an example-first style, the text is accessible to students who have completed multivariable calculus and is appropriate for courses in mathematics and engineering that study systems of differential equations.

Full of features and applications, this acclaimed textbook for upper undergraduate level and graduate level students includes all the major topics of computational linear algebra, including solution of a system of linear equations, least-squares solutions of linear systems, computation of eigenvalues, eigenvectors, and singular value problems. Drawing from numerous disciplines of science and engineering, the author covers a variety of motivating applications. When a physical problem is posed, the scientific and engineering significance of the solution is clearly stated. Each chapter contains a summary of the important concepts developed in that chapter, suggestions for further reading, and numerous exercises, both theoretical and MATLAB and MATCOM based. The author also provides a list of key words for quick reference. The MATLAB toolkit available online, 'MATCOM', contains implementations of the major algorithms in the book and will enable students to study different algorithms for the same problem, comparing efficiency, stability, and accuracy.